Introduction

Cell's factory; site for protein synthesis (Translation)

Also know as Translational Apparatus

Non-membranous organelle

Mostly attached to Rough ■

Also found free

Made up of rRNA and ribosomal proteins

- More active cell contain more number of ribosomes
- Ribosomes also present in mitochondria and chloroplast of eukaryotic cells

History

- •First observed during mid 1950s by George Emil Palade
- By electron microscope as dense particles
- First named Microsomal Particles
- Its detailed structure was discovered in 2000 and 2001

Types of Ribosome

- Classified according to their location-
- Membrane-Bound Ribosomes
 Synthesize proteins for membranes and exocytosis (Used outside the cell)
 - Attached to ER and other organelles

- •Free Ribosomes
 - Found freely in cytoplasm (Redarrows)

- www.wikipedia.com
- Synthesize proteins that function inside the cytosol (Used inside the cell e.g. food metabolism)

Structure of Ribosomes

- Made up of rRNAs and distinct Ribosomal Proteins
- Made up of two sub-units
 - In prokaryote- (70S)

In eukaryote- (80S)

30S subunit: 16S rRNA molecule + 21 different proteins. 5S rRNA 50S subunit: 31 different proteins. 16S rRNA 308 21 PROTEINS 508 31 PROTEINS Fig. 13.2. 705 Ribosome http://www.biologydiscussion. 18S rRNA **40S** com/proteins/protein-30 PROTEINS synthesis/role-of-ribosomes-inprotein-synthesis-with-diagram 5S 5.8S rRNA 28S 608 **50 PROTEINS**

Fig. 13.3. 80S ribosome

Prokaryotic vs Eukaryotic Ribosome

Fig. 15.18 Comparison between prokaryotic and eukaryotic ribosomes.

http://www.biologydiscussion.com/ribosome/structure-of-subunits-of-ribosomes-with-diagram-genetic

©Labmonk.com

Continue...

- Here S- represents the svedberg's unit or sedimentation co-efficient
- Eukaryotic ribosomes are larger and sediment at 80S- 40S+60S
- Prokaryotic ribosomes are smaller and sediment at 70S-50S+30S

Constituents of Ribosomes

- Made up of rRNA and protein
- More than 40-70 rProtein present

rRna

- rRNA has ribozyme activity (Peptidyl transferase) i.e. it catalyzes the peptide bond formation with the help of ribosomal proteins
- In prokaryote-there are 3 rRNA present
 - 16S rRNA- found in smaller sub-units i.e. 30S
 - 23S and 5S- present in larger sub-units i.e. 50S

- In eukaryote- 4rRNA are present
- 18S present in smaller subunit i.e. 40S
- 28S, 5.8s and 5S- present in larger sub units i.e. 60S

Ribosome has 2- subunit

https://www.quora.com/What-are-70S-ribosomes#

Large Subunit

- Contains the active site of ribosome
- The site where new peptide bonds are formed
- Contains Aminoacyl binding site
- Contains Peptidyl binding site
- E-site for exit
- It uses peptidyl transferase to catalyze the process
- Made of two rRNA
- And many protein

figure 4: Atomic structure of the 50S subunit from <u>Haloarcula</u> <u>marismortui</u>. Proteins are shown in blue and the two RNA chains in brown and yellow. [30] The small patch of green in the center of the subunit is the active site.

https://en.wikipedia.org/wiki/Ribosome

 $\frac{https://teachmephysiology.com/basics/protein-synthesis/dnatural stranslation/}{translation/}$

Small Subunit

- Made up of 16S rRNA
- And 19 rProtein
- In charge of information flow
- Intake of mRNA
- Pairing codons with anti-codons
- Scan the mRNA for start codon (5')-AUG-(3') to initiating the translation
- Contain entry and exit site for mRNA

Proteins are shown in blue and the single RNA chain in brown

https://www.philpoteducation.com/mod/book/tool/print/index.php?id=802&chapterid=1073

Ribosome Biogenesis

- •It is the process of making Ribosomes in thet nucleus
- •The protein parts are made in the cytoplasm (Ribosome)
- Then transferred to the nucleus (Nuclear Pores)
- •rRNAs are transcribed in the nucleolus
- The ribosomal proteins and rRNAsbind together
- Small and large subunits are made
- They are transported out of nucleus (Pores)

Function

- The one and only function is Protein Synthesis
- This process is called Translation
- Begins with transcription of mRNAin the nucleus
- mRNAtravels to the cytoplasm with specific codes
- It binds with the small subunit of the ribosome
- The two subunits come together

https://www.khanacademy.org/science/biology/geneexpression-central-dogma/translation-polypeptides/a/thestages-of-translation

Common Disorders

- Most of the disorders associated with ribosome have abnormal biogenesis
- It is the abnormal formation of ribosomes
- Mostly they get destroyed but they escape in rare cases
- Some major diseases caused by abnormal ribosome;
 - Diamond-Blackfan anemia
 - Cartilage-hair hypoplasia

https://www.khanacademy.org/science/biology/ribosomal

Keep your factory safe

References

- WEBSITES
- https://bscb.org/learning-resources/softcell-e-learning/ribosome/
- http://pdb101.rcsb.org/motm/10
- https://micro.magnet.fsu.edu/cells/ribosomes/ribosomes.html
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858486/

BOOKS-

- Cell Biology and Molecular Biology, E.D.P.De Roberties ,, 8th Edition
- Cell Biology Organelle Structure and Function, David E. Sadava

Thank You!

