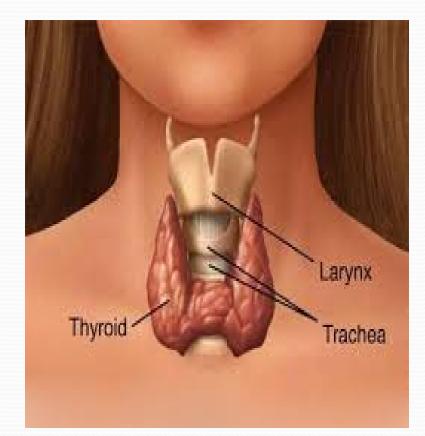
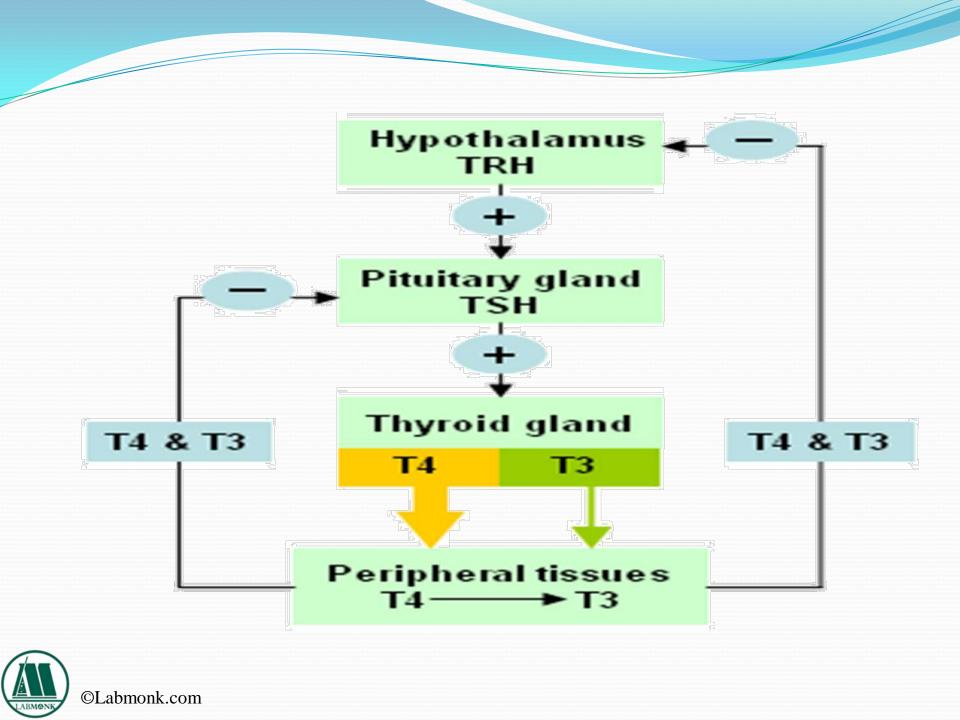
THYROID FUNCTION TEST

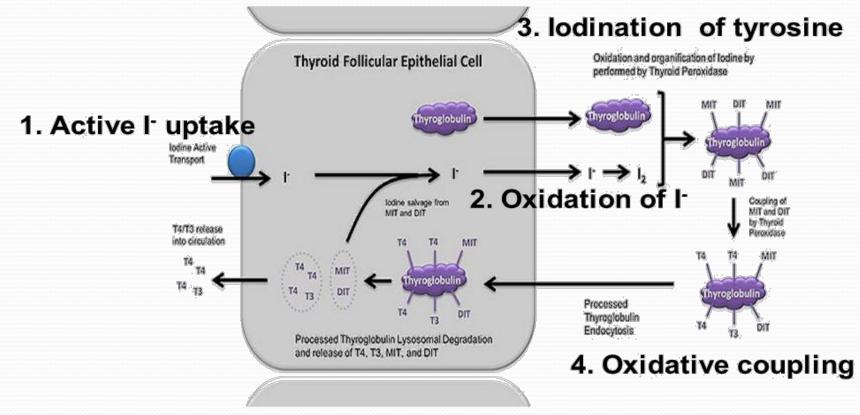
Suman Kumar Mekap Asst. Professor in Pharmacology RIPS, Berhampur


Epidemiology

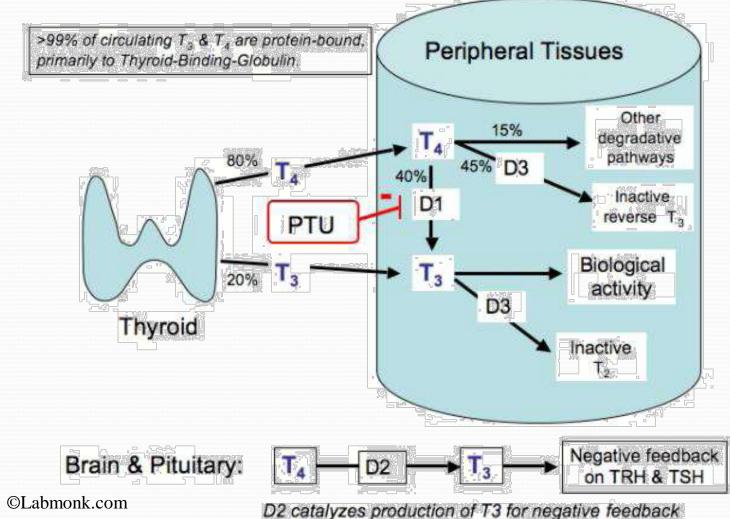
According to the Indian Thyroid Society, it is estimated that **4.2 crore people in the country** are suffering from thyroid disorders with almost **90 per cent undiagnosed**.



Anatomy of Thyroid gland


The thyroid gland is a butterfly-shaped endocrine gland that is normally located anterior side of the neck lying in front & around the larynx & trachea just below the laryngeal prominence. (Adam's apple)

Biosynthesis of thyroid hormones Biosynthesis of T3 and T4



- 1. Iodide (I-) enters the thryroid cell via sodium iodide symporter
- 2. It enters the colloid through pendrin receptor
- 3. It is oxidized into Iodine (Io) by peroxidase enzyme
- 4. Then it is organified into MIT and DIT (mono and di iodo thyronine)
- 5. Then after coupling it forms T₃ (Tri iodo thyronine) and T₄ (Thyroxine)
- 6. T₃ and T₄ conjugate with TBG (thyroid binding globulin)
- 7. conjugated TBG is stored in colloid till required
- 8. While releasing into blood stream, it is first endocytosed into thyroid cell and then de - coupled to form, T₃ and T₄ with MIT and DIT
- 9. MIT and DIT can be reutilized for coupling

ODab Trandm T4 are released into the blood stream

What happens to thyroid hormones after release

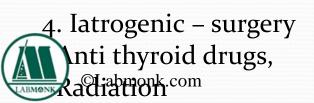
Concept of FT3 and FT4

- 1. Out of the total T3 and T4 in circulation, most of it remains bound to thyroid binding globulin *, prealbumin and albumin. (*note :this is not thyroglobulin)
- 2. Only about 0.05% of each T3 and T4 remains free in circulation. This is FT3 and FT4.
- 3. These are better indicators for thyroid function than total T3 and Total T4. (total=bound+free)
- 4. For example in pregnancy, level of thyroid binding globulin rises; hence though total T3 and total T4 remains same, level of FT3 and FT4 decreases.

CLASSIFICATION OF THYROID DISEASE

HYPO THYROIDISM-MOST COMMON

HYPER THYROIDISM SUB CLINICAL CASES-1.HYPO 2.HYPER (ASYMPTO-MATIC CASES)



©Labmonk.com

Hypothyroidism

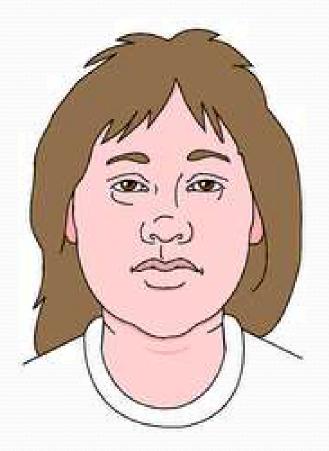
Causes: Primary Hypothyroidism (High TSH, low T₃ and T₄)

- 1. Iodine deficiency
- 2. Goitrogens (excess amount interfere in iodine uptake)
- SOY products
- •strawberry,
- Sweet potatoes
- cabbage, cauliflower, spinach
- •Broccoli
- •Millet etc.
- 3. Hashimoto's(anti microsomal antibodies)

Secondary hypothyroidism (Low TSH with normal TRH)

- i.e. pituitary problem
- diseases of pituitary

Tertiary hypothyroidism (LOW TSH, Low TRH)


- i.e. hypothalamic problem1. diseases of the hypothalamus
- Exaggerated response to TSH RH stimulation
- Rise and Delayed response to TSH-RH stimulation

Common Signs and Symptoms of Hypothyroidism

- Dry skin
- Brittle and lustreless hair
- Weight gain
- Tiredness
- Constipation
- Muscle aches
- Bradycardia
- Cold intolerance
- Depression
- Memory Loss
- Menstural abnormality

Lab abnormalities in hypothyroidism

- Hyper lipidemia
- Anemia (macrocytic-due to vit B12 def)
- High LDH
- High CPK
- Hyper prolactemia
- Hypo natremia

Hyperthyroidism Causes:

Primary hyperthyroidism Low TSH, High T4	Secondary Hyperthyroidism High TSH, High T4 Pituitary/Para neo plastic syndrome	Factitious Hyperthyroidism
 Grave's disease Toxicity in Multi nodular goitre toxicity in adenoma Sub acute thyroiditis 	 TSH secreting pituitary adenoma Tropho blastic tumours that secrete TSH (chorio carcinoma, H. mole) 	Exogenous ingestion of large dose of thyroid hormone.

Common Signs and Symptoms of Hyper thyroidism

- Worm moist skin
- Hair loss
- Weight loss
- Nervousness
- Increased bowel movements
- Muscle weakness
- Tachycardia
- Heat intolerance
- insomnia
- Difficulty in concentrating
- Light or Absent periods

Laboratory findings in Hyperthyroidism

- TSH nearly undetectable
- Elevated FT₄ or FT₃
- Mild leuko penia
- N/N anemia
- ESR elevated
- Mild ↑ Ca++
- ↓ Albumin
- ↓ Cholesterol

TRH Stimulation test

Indication:

• To rule out secondary or tertiary hypo/hyper thyroidism

Baseline sample collected for estimation of basal serum TSH levels

\downarrow Inject TRH (200 to 500 ug i.v) \downarrow Measure TSH at 20 & 60 mins

		Baseline TSH	20 min TSH	60 min TSH	interpretation
		Normal	Rise of >2mU/L	Small decline	normal
	Hypothyroidi sm	Elevated	Further rise	Small decline	Primary hypothyroidism
		Low	No rise		Secondary hypothyroidism (pituitary)
		Low	rise	Further rise (delayed)	Hypothalamic hypothyroidism
	Hyperthyroi dism	elevated	rise		Thyroid hormone resistance
	©Labmonk.com	elevated	No rise		Pituitary adenoma/ para neoplastic
LABMON					

THYROID FUNCTION TEST INDICATION

- Suspicion of thyroid disease based on clinical signs and symptoms.
- Screening for thyroid disease.
- Evaluation of treatment for thyroid disease.

Thyroid Disease – Who Is At Risk ?

- All new borns (neonatal screening)
- Personal history of thyroid disease
- Strong family history of thyroid disease
- Have an autoimmune disease, such as Type 1 Diabetes
- Some genetic conditions (e.g. Down, Turner syndromes)
- Past history of neck irradiation
- Drug therapies such as lithium and amio darone

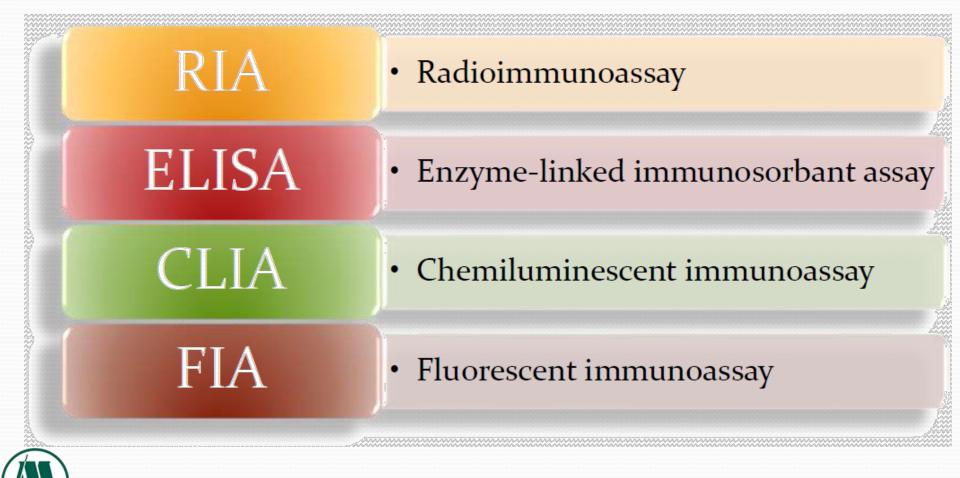
- Women over age 35
- Elderly patients
- Pregnant women during the first trimester
- Women 6 weeks to 6 months post-partum
- Have elevated lipid levels

BLOOD test to evaluate thyroid disease:

TSH ,T4 ,T3

FT₄ , FT₃: Free hormone(Active metabolite)

 rT_3 :(inactive metabolite)high in NTI , newborn, hyperthyroidism


Thyro globulin mesurement

Thyroid antibodies: AntiTPO antibodies, (microsomal) TSH receptor Abs Anti TG antibodies

Urinary iodine mesurement

METHODS USED TO MEASURE THYROID HORMONES

Cabmonk.com

Principle of FT4 measurement by immunoassay method.

- High affinity hormone Abs measure free hormone as a fraction of binding site occupancy. Means (unoccupied Abs sites are **inversely** proportional to free hormone.)
- Hormone labeled tracer quantified free hormone level & passing signals which are converted to concentration using calibrators.

Factors limit the validity of free T₄ IMMUNO ASSAY method

- **1.Dilution effects & protein dependence**: dissociation of bound ligand occurs with sample dilution
- **2.Anomalous protein binding of tracer**: Certain tracer used in FT₄ assay have high binding capacity to protein(albumin)→ so in serum less tracer available for free Abs binding site→ false high FT₄;while (in dialysis pts ,low protein →more tracer bind to Abs→ False Low FT₄.)
- **3.Heparin effect**: Heparin induce sample $\rightarrow \uparrow$ ed lipase activity(if TG is high, Albumin is low, temp is prolong at 37C \rightarrow high non esterified fatty acid \rightarrow inhibit binding of T4 to serum protein in vitro only \rightarrow false high FT4.
- **4.Dysalbuminemic hyper thyroxinemia** pts have abnormal proteins which bind T4 ,so spurious result of FT4 varies depending on labs.
- Most accurate methods are: Equilibrium dialysis(time consumable), Ultra filtration(avoid dilution effect) , mass spectroscopy. When FT4 is not correlate persistently with other parameter, method should be change.

Thyro globulin measurement

- Thyroglobulin: One kind of organ specific protein.
- Increased in Thyroid mass , injury , inflammation , TSH stimulation. Indication in practice:
- 1.congenital hypothyroidism(thyroiddysgenesis(low)/ dyshormonogenesis (high))
- 2.endemic goiter area, to monitor iodine supplementation.
- 3.Differentiated thyroid cancer cases ,after Sx to monitor recurrence
- 4.Thyrotoxicosis factitia: endogenous thyrotoxicosis(↑TG), exogenous ingestion of thyroid hormone(↓TG)

Drugs alter thyroid function test

Alter secretion of T3,T4	↑ TBG	↓ TBG	Competitio n with binding protein	Induction of metabolism	Activation from T4 to T3	Centrl TSH suppresio n
Thionamid e	Estrogen	Andro gen	Aspirin	Phenytoin	Amio darone	Dopamine
Ethiona mide	Narcotics	Danazol	Heparin	Carbema zepine	Propyl thiourecil	Dobuta mine
Lithium	5-FU	Nicotini c acid	Furosemide (high dose)	Pheno barbitone	Dexameth asone	Octreotide
	Clofibrat e	L- asparagi nase		Rifampicin	Radio graphic agent	
				Oxcarbema zenine		

©Labmonk.com

Normal range of TFT in infant & children

Age	FT4(n g/dl)	T4(ug/ dl	FT3(pg/d l)	T3(ng/ ml	TSH(mu/ L)	TBG(mg/d 1)
Cord blood	0.9-2.2	7.4-13.0		15-75	1.0-17.4	2.5-5.1
1-4 days	2.2- 5·3↑	14.0- 28.4↑	180-760	100-740↑	1.0-39.0↑	
2-20weeks	0.9- 2.3↓	7.2- 15.7↓	185-770	105-245↓	1.7-9.1↓	2.1-6.0
5-24 months	0.8- 1.8↓	7.2-15.7	215-770	105-269	0.8-8.2	
2-7 years	1.0- 2.1↑	6.0-14.2	215-700	94-241	0.7-5.7↓	2.0-5.3
8-20 yrs	0.8-1.9	4·7- 12.4↓	230-650	80-210	0.7-5.7	1.8-4.2
©Labmonk.co	0.9 -2.5 m	5.3- 10.5↓	210-440	70-204	0.4-4.2	1.8-4.2

PRE TERM BABIES

- Preterm term baby has their own unique set of thyroid function tests & its directly co relate with gestation age & birth weight.
- Usually preterm babies have" low T₄-non elevated TSH " result in screening programe.

Because

- 1.discontinuation of maternal T4.
- 2.immaturity of hypothalamic-pitutary stimulation(low TSH surge).
- 3.immaturity in thyroid hormone production.
- 4.low iodine intake(due to i.v fluids).
- repeat test is indicated in most cases.

For More Details Kindly Visit: LABMONK.COM

